On a kinetic model for shallow water waves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Kinetic Model for Shallow Water Waves

The system of shallow water waves is one of the classical examples for nonlinear, twodimensional conservation laws. The paper investigates a simple kinetic equation depending on a parameter " which leads for " ! 0 to the system of shallow water waves. The corresponding 'equilibrium' distribution function has a compact support which depends on the eigenvalues of the hyperbolic system. It is show...

متن کامل

On a Class of Boussinesq Equations for Shallow Water Waves

The Euler’s equations describing the dynamics of capillarygravity water waves in two-dimensions are considered in the limits of small-amplitude and long-wavelength under appropriate boundary conditions. Using a double-series perturbation analysis, a general Boussinesq type of equation is derived involving the small-amplitude and longwavelength parameters. A recently introduced sixth-order Bouss...

متن کامل

Conservation Laws for Shallow Water Waves on a Sloping Beach

Shallow water waves are governed by a pair of non-linear partial differential equations. We transfer the associated homogeneous and non-homogeneous systems, (corresponding to constant and sloping depth, respectively), to the hodograph plane where we find all the non-simple wave solutions and construct infinitely many polynomial conservation laws. We also establish correspondence between conserv...

متن کامل

Shallow Water Waves and Solitary Waves

Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depth. Internal wave A internal wave travels within the interior of a fluid. The maximum velocity and maximum amplitude occur within the fluid or at an internal boundary (interface). Internal waves depend on the density-stratification of the fluid. Shallow water A surface wave i...

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in the Applied Sciences

سال: 1995

ISSN: 0170-4214,1099-1476

DOI: 10.1002/mma.1670180905